m^2+5m+1m=-2

Simple and best practice solution for m^2+5m+1m=-2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for m^2+5m+1m=-2 equation:



m^2+5m+1m=-2
We move all terms to the left:
m^2+5m+1m-(-2)=0
We add all the numbers together, and all the variables
m^2+6m+2=0
a = 1; b = 6; c = +2;
Δ = b2-4ac
Δ = 62-4·1·2
Δ = 28
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{28}=\sqrt{4*7}=\sqrt{4}*\sqrt{7}=2\sqrt{7}$
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{7}}{2*1}=\frac{-6-2\sqrt{7}}{2} $
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{7}}{2*1}=\frac{-6+2\sqrt{7}}{2} $

See similar equations:

| y+ | | k(-1)=1^-1 | | M=-2m^2+5m+1 | | k(-1)=0^-1 | | .90+6n=2.40 | | x-20=4x-10 | | (7x+15)=180 | | k(-1)=0.5^-1 | | 5(x-14)-8x=2 | | -(49+x)=49 | | (7x+15)-81=180 | | (3x-14)-70=180 | | 7x-11+5(x+2)=-11 | | 3(3y-8)=16 | | 11p-20=14p+5(5p-4) | | 28+0=+24x+2 | | -8(2x+4)-5x+2=33 | | 1.25x+15=90 | | 18t-15=9(2t+10) | | 3(b+4)+8=-4* | | 0.75t^2-2t=0 | | 8(k-4)=(4)(3)* | | 3(-5f-2)=-15f | | 17-4n+6n=2n+7 | | 57=3x-4(x-12) | | 10-5x=15-x | | -20c-15=15-20c+2 | | 50+13.25p=25.75p | | (X-48)=(x-39) | | 5(2a+7)=−19.38a+35. | | 5b-4=21* | | -6z=2(-z-10) |

Equations solver categories